Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38630118

RESUMEN

The taxonomic position of three actinobacterial strains, BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T, recovered from bare soil in the Sokolov Coal Basin, Czech Republic, was established using a polyphasic approach. The multilocus sequence analysis based on 100 single-copy genes positioned BCCO 10_0061T in the same cluster as Lentzea waywayandensis, strain BCCO 10_0798T in the same cluster as Lentzea flaviverrucosa, Lentzea californiensis, Lentzea violacea, and Lentzea albidocapillata, and strain BCCO 10_0856T clustered together with Lentzea kentuckyensis and Lentzea alba. Morphological and chemotaxonomic characteristics of these strains support their assignment to the genus Lentzea. In all three strains, MK-9(H4) accounted for more than 80 % of the isoprenoid quinone. The diagnostic diamino acid in the cell-wall peptidoglycan was meso-diaminopimelic acid. The whole-cell sugars were rhamnose, ribose, mannose, glucose, and galactose. The major fatty acids (>10 %) were iso-C15 : 0, anteiso-C15 : 0, iso-C16 : 0, and C16 : 0. The polar lipids were diphosphatidylglycerol, methyl-phosphatidylethanolamine, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol. The genomic DNA G+C content of strains (mol%) was 68.8 for BCCO 10_0061T, 69.2 for BCCO 10_0798T, and 68.5 for BCCO 10_0856T. The combination of digital DNA-DNA hybridization results, average nucleotide identity values and phenotypic characteristics of BCCO 10_0061T, BCCO 10_0798T, and BCCO 10_0856T distinguishes them from their closely related strains. Bioinformatic analysis of the genome sequences of the strains revealed several biosynthetic gene clusters (BGCs) with identities >50 % to already known clusters, including BGCs for geosmin, coelichelin, ε-poly-l-lysine, and erythromycin-like BGCs. Most of the identified BGCs showed low similarity to known BGCs (<50 %) suggesting their genetic potential for the biosynthesis of novel secondary metabolites. Based on the above results, each strain represents a novel species of the genus Lentzea, for which we propose the name Lentzea sokolovensis sp. nov. for BCCO 10_0061T (=DSM 116175T), Lentzea kristufekii sp. nov. for BCCO 10_0798T (=DSM 116176T), and Lentzea miocenica sp. nov. for BCCO 10_0856T (=DSM 116177T).


Asunto(s)
Actinobacteria , Actinomycetales , Fosfatidiletanolaminas , República Checa , Composición de Base , Ácidos Grasos/química , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias , Carbón Mineral
2.
Environ Microbiol Rep ; 16(2): e13266, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38653477

RESUMEN

The Gram-positive bacteria Streptomyces davaonensis and Streptomyces cinnabarinus have been the only organisms known to produce roseoflavin, a riboflavin (vitamin B2) derived red antibiotic. Using a selective growth medium and a phenotypic screening, we were able to isolate a novel roseoflavin producer from a German soil sample. The isolation procedure was repeated twice, that is, the same strain could be isolated from the same location in Berlin 6 months and 12 months after its first isolation. Whole genome sequencing of the novel roseoflavin producer revealed an unusual chromosomal arrangement and the deposited genome sequence of the new isolate (G + C content of 71.47%) contains 897 genes per inverted terminal repeat, 6190 genes in the core and 107 genes located on an illegitimate terminal end. We identified the roseoflavin biosynthetic genes rosA, rosB and rosC and an unusually high number of riboflavin biosynthetic genes. Overexpression of rosA, rosB and rosC in Escherichia coli and enzyme assays confirmed their predicted functions in roseoflavin biosynthesis. A full taxonomic analysis revealed that the isolate represents a previously unknown Streptomyces species and we propose the name Streptomyces berlinensis sp. nov. for this roseoflavin producer.


Asunto(s)
Filogenia , Riboflavina , Riboflavina/análogos & derivados , Microbiología del Suelo , Streptomyces , Streptomyces/genética , Streptomyces/clasificación , Streptomyces/metabolismo , Streptomyces/aislamiento & purificación , Riboflavina/metabolismo , Riboflavina/biosíntesis , Composición de Base , Genoma Bacteriano , Secuenciación Completa del Genoma , Alemania , Antibacterianos/biosíntesis , Antibacterianos/metabolismo
3.
Front Bioeng Biotechnol ; 12: 1255151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38361790

RESUMEN

Strain collections are a treasure chest of numerous valuable and taxonomically validated bioresources. The Leibniz Institute DSMZ is one of the largest and most diverse microbial strain collections worldwide, with a long tradition of actinomycetes research. Actinomycetes, especially the genus Streptomyces, are renowned as prolific producers of antibiotics and many other bioactive natural products. In light of this, five Streptomyces strains, DSM 40971T, DSM 40484T, DSM 40713T, DSM 40976T, and DSM 40907T, which had been deposited a long time ago without comprehensive characterization, were the subject of polyphasic taxonomic studies and genome mining for natural compounds based on in vitro and in silico analyses. Phenotypic, genetic, and phylogenomic studies distinguished the strains from their closely related neighbors. The digital DNA-DNA hybridization and average nucleotide identity values between the five strains and their close, validly named species were below the threshold of 70% and 95%-96%, respectively, determined for prokaryotic species demarcation. Therefore, the five strains merit being considered as novel Streptomyces species, for which the names Streptomyces kutzneri sp. nov., Streptomyces stackebrandtii sp. nov., Streptomyces zähneri sp. nov., Streptomyces winkii sp. nov., and Streptomyces kroppenstedtii sp. nov. are proposed. Bioinformatics analysis of the genome sequences of the five strains revealed their genetic potential for the production of secondary metabolites, which helped identify the natural compounds cinerubin B from strain DSM 40484T and the phosphonate antibiotic phosphonoalamide from strain DSM 40907T and highlighted strain DSM 40976T as a candidate for regulator-guided gene cluster activation due to the abundance of numerous "Streptomyces antibiotic regulatory protein" (SARP) genes.

4.
J Genomics ; 12: 6-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164509

RESUMEN

Streptomyces Strain San01 is isolated from the soil of ant-nest found in the tea estate of Darjeeling, India. The morphology, biochemical, as well as the molecular characteristics, proved that San01 belonged to the genus Streptomyces. The average nucleotide identity (ANI) value between the genome sequence of the studied strain and its closest phylogenetic neighbors were very low and also could be distinguished from its closest neighbour with broad range of phenotypic data. The draft genome sequence of isolate San01 (NZ_RZYA00000000.1) was estimated to be 9.12 Mbp in size with 71.2% of GC content and it encompasses 39 biosynthetic gene clusters that emphasize the biotechnological potential of this isolate.Based on the phenotypic, genetic and genomic data, isolate San01 (=JCM 34633 = NCTC 14543) merits to be recognized as a type strain of a novel species and hereby propose the name Streptomyces antnestii sp. nov. Incidentally, this is the first report on Streptomyces genomes from Darjeeling, India.

5.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38059605

RESUMEN

Two novel Micromonospora strains, STR1-7T and STR1S-6T, were isolated from the rhizosphere of a Parastrephia quadrangularis plant growing in the Salar de Tara region of the Atacama Desert, Chile. Chemotaxonomic, cultural and phenotypic features confirmed that the isolates belonged to the genus Micromonospora. They grew from 20 to 37 °C, from pH7 to 8 and in the presence of up to 3 %, w/v NaCl. The isolates formed distinct branches in Micromonospora gene trees based on 16S rRNA gene sequences and on a multi-locus sequence analysis of conserved house-keeping genes. A phylogenomic tree generated from the draft genomes of the isolates and their closest phylogenetic neighbours showed that isolate STR1-7T is most closely related to Micromonospora orduensis S2509T, and isolate STR1S-6 T forms a distinct branch that is most closely related to 12 validly named Micromonospora species, including Micromonospora saelicesensis the earliest proposed member of the group. The isolates were separated from one another and from their closest phylogenomic neighbours using a combination of chemotaxonomic, genomic and phenotypic features, and by low average nucleotide index and digital DNA-DNA hybridization values. Consequently, it is proposed that isolates STR1-7T and STR1S-6T be recognized as representing new species in the genus Micromonospora, namely as Micromonospora parastrephiae sp. nov. and Micromonospora tarensis sp. nov.; the type strains are STR1-7T (=CECT 9665T=LMG 30768T) and STR1S-6T (=CECT 9666T=LMG 30770T), respectively. Genome mining showed that the isolates have the capacity to produce novel specialized metabolites, notably antibiotics and compounds that promote plant growth, as well as a broad-range of stress-related genes that provide an insight into how they cope with harsh abiotic conditions that prevail in high-altitude Atacama Desert soils.


Asunto(s)
Fabaceae , Micromonospora , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Análisis de Secuencia de ADN , Chile , Filogenia , Rizosfera , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base
6.
Int J Syst Evol Microbiol ; 73(12)2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38098135

RESUMEN

Strains CN4T, CN6, CN7 and CNm7 were isolated from root nodules of Coriaria nepalensis from Murree in Pakistan. They do not form root nodules on C. nepalensis nor on Alnus glutinosa although they deformed root hairs of Alnus. The colonies are bright red-pigmented, the strains form hyphae and sporangia but no N2-fixing vesicles and do not fix nitrogen in vitro. The peptidoglycan of strain CN4T contains meso-diaminopimelic acid; whole cell sugars consist of ribose, mannose, glucose, galactose and rhamnose. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and two unknown lipids represent the major polar lipids; MK-9(H4) and MK-9(H6) are the predominant menaquinones (>15 %), and iso-C16 : 0 and C17 : 1ω8c are the major fatty acids (>15 %). The results of comparative 16S rRNA gene sequence analyses indicated that strain CN4T is most closely related to Frankia saprophytica CN 3T. An MLSA phylogeny using amino acids sequences of AtpD, DnaA, FtsZ, Pgk and RpoB, assigned the strain to cluster 4 non-nodulating species, close to F. saprophytica CN 3T , Frankia asymbiotica M16386T and Frankia inefficax EuI1cT with 0.04 substitutions per site, while that value was 0.075 with other strains. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between CN4T and all species of the genus Frankia with validly published names were below the defined threshold for prokaryotic species demarcation, with dDDH and ANI values at or below 27.8 and 83.7 %, respectively. The four strains CN4T, CN6, CN7 and CNm7 had dDDH (98.6-99.6 %) and ANI values that grouped them as representing a single species. CN4T has a 10.76 Mb genome. CN4T was different from its close phylogenetic neighbours with validly published names in being red-pigmented, in having several lantibiotic-coding clusters, a carbon monoxide dehydrogenase cluster and a clustered regularly interspaced short palindromic repeats (CRISPR) cluster. The results of phenotypic, physiological and phylogenomic analyses confirmed the assignment of strain CN4T (=DSM 114740T = LMG 32595T) to a novel species, with CN4T as type strain, for which the name Frankia nepalensis sp. nov. is proposed.


Asunto(s)
Frankia , Magnoliopsida , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base
7.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37917135

RESUMEN

Strain TÜ4103T was originally sampled from Java, Indonesia and deposited in the Tübingen strain collection under the name 'Streptomyces sp.'. The strain was found to be an antibiotic producer as strain TÜ4103T showed bioactivity against Gram-positive bacteria, such as Bacillus subtilis and Kocuria rhizophila in bioassays. Strain TÜ4103T showed 16S rRNA gene sequence similarity of 99.65 % to Kitasatospora cheerisanensis DSM 101999T and 98.82 % to Kitasatospora niigatensis DSM 44781T and Kitasatospora cineracea DSM 44780T. Genome-based phylogenetic analysis revealed that strain TÜ4103T is closely related to K. cineracea DSM 44780T and K. niigatensis DSM 44781T. The digital DNA-DNA hybridization values between the genome sequences of strain TÜ4103T and its closest phylogenomic relatives, strains DSM 44780T and DSM 44781T, were 43.0 and 42.9 %, respectively. Average nucleotide identity (ANI) values support this claim, with the highest ANI score of 91.14 % between TÜ4103T and K. niigatensis being closely followed by an ANI value of 91.10 % between K. cineracea and TÜ4103T. The genome of TÜ4103T has a size of 7.91 Mb with a G+C content of 74.05 mol%. Whole-cell hydrolysates of strain TÜ4103T are rich in meso-diaminopimelic acid, and rhamnose, galactose and mannose are characteristic as whole-cell sugars. The phospholipid profile contains phosphatidylethanolamine, diphosphatidylglycerol and glycophospholipid. The predominant menaquinones (>93.5 %) are MK-9(H8) and MK-9(H6). Based on the phenotypic, genotypic and genomic characteristics, strain TÜ4103T (=DSM 114396T=CECT 30712T) merits recognition as the type strain of a novel species of the genus Kitasatospora, for which the name Kitasatospora fiedleri sp. nov. is proposed.


Asunto(s)
Antibacterianos , Ácidos Grasos , Composición de Base , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Nucleótidos
8.
Artículo en Inglés | MEDLINE | ID: mdl-37540199

RESUMEN

Strains USC-21046T and USC-21048T were isolated from foaming coastal marine waters on the Sunshine Coast, Queensland, Australia. Both strains displayed growth and morphological characteristics typical for members belonging to the genus Nocardia. The major polar lipids were diphosphatidylglycerol and phosphatidylethanolamine, and the major fatty acids were C16 : 0, C18 : 1 ω9c, C18 : 0 and C18 : 0 10-methyl. The mycolic acids of strains USC-21046T and USC-21048T consisted of chain lengths between 50-64 and 56-68, respectively. Moreover, both of those strains contained meso-diaminopimelic acid and ribose, arabinose, glucose and galactose as whole cell sugars. Based on the phylogenomic results, both strains belonged to the genus Nocardia with strain USC-21046T showing an 80.4 % genome similarity to N. vinacea NBRC 16497T and N. pseudovaccinii NBRC 100343T, whereas USC-21048T strain showed an 83.6 % genome similarity to N. aobensis NBRC 100429T. Both strains were delineated from their closely related relatives based on physiological (e.g. growth on sole carbon source) and chemotaxonomic (e.g. cellular fatty composition) differences. The digital DNA-DNA hybridization (dDDH) values between USC-21046T and USC-21048T and their closely related relatives were below the dDDH threshold value of ≤70 % used for the taxonomic classification of novel species status. The genome length of strains USC-21046T and USC-21048T were 6 878 863 and 7 066 978 bp, with G+C contents of 65.2 and 67.8 mol%, respectively. For the novel isolates, we propose the names Nocardia australiensis sp. nov. with the type strain USC-21046T (=DSM 111727T=NCCB 100867T) and Nocardia spumae sp. nov. with the type strain USC-21048T (=DSM 111726T=NCCB 100868T).


Asunto(s)
Ácidos Grasos , Nocardia , Ácidos Grasos/química , Fosfolípidos , Queensland , Filogenia , Composición de Base , ARN Ribosómico 16S/genética , Microbiología del Suelo , Vitamina K 2 , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Australia
9.
Artículo en Inglés | MEDLINE | ID: mdl-37351943

RESUMEN

Frankia strain Ag45/Mut15T was isolated from a root nodule of Alnus glutinosa growing in a swamp at lake Grossensee, Germany. The strain forms root nodules on A. glutinosa, in which it produces hyphae and clusters of N2-fixing vesicles. N2-fixing vesicles are also produced in nitrogen-free growth medium, in addition to hyphae and sporangia. The whole-cell hydrolysates of strain Ag45/Mut15T contained meso-diaminopimelic acid in the peptidoglycan and ribose, xylose, mannose, glucose, galactose and a trace of rhamnose as cell-wall sugars. The major polar lipids were phosphatidylglycerol, phosphatidylinositol, diphosphatidylglycerol and glyco-phospholipid. The predominant (>20 %) menaquinones were MK-9(H6) and MK-9(H4). The major fatty acid profile (>10 %) consisted of iso-C16:0, C17 : 1 ω8c and C17 : 0. Pairwise 16S rRNA gene distances showed that strain Ag45/Mut15T was most closely related to Frankia torreyi CpI1T and Candidatus Frankia nodulisporulans with 16S rRNA gene similarity values of 0.001335 substitutions per site. An multilocus sequence analysis phylogeny based on atpD, dnaA, ftsZ, pgk and rpoB amino acid sequences positioned the strain within cluster 1 of Alnus- and Myrica-nodulating species, close to Candidatus F. nodulisporulans AgTrST and F. canadensis ARgP5T. The digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between the studied strain Ag45/Mut15T and all validly named Frankia species were below the defined threshold for prokaryotic species demarcation. Candidatus F. nodulisporulans AgTrST, which cannot be cultivated in vitro, was found to be the closest phylogenetic neighbour to strain strain Ag45/Mut15T with dDDH and ANI values of 61.8 and 97 %, respectively. Strain Ag45/Mut15T was not able to sporulate in nodule tissues like strain AgTrST.Phenotypic, physiological and phylogenomic analyses confirmed the assignment of strain Ag45/Mut15T (=DSM 114737T=LMG 326O1T) to a novel species, with Ag45/Mut15T as type strain, for which the name Frankia umida sp. nov. is proposed.


Asunto(s)
Alnus , Frankia , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Fosfolípidos/química , Vitamina K 2/química
11.
Artículo en Inglés | MEDLINE | ID: mdl-36749700

RESUMEN

Novel Corynebacterium strains, 3BT and 7BT, were isolated from the oral cavities of young chicks of yellow-eyed penguins (hoiho), Megadyptes antipodes. A polyphasic taxonomic characterization of these strains revealed chemotaxonomic, biochemical and morphological features that are consistent with those of the genus Corynebacterium. The 16S rRNA gene sequence similarity values between the strains and their closest phylogenetic neighbour, Corynebacterium ciconiae CCUG 47525T were 99.07 %, values that are in line with their phylogenomic positions within the evolutionary radiation of the genus Corynebacterium. Digital DNA-DNA hybridization values and average nucleotide identities between the genome sequences of the two strains and related Corynebacterium species were well below the defined threshold values (70 and 95-96 %, respectively) for prokaryotic species delineation. The genome size of these strains varied between 2.45-2.46 Mb with G+C content 62.7-62.9 mol%. Strains 3BT and 7BT were Gram-stain positive bacilli that were able to grow in presence of 0-10 % (w/v) NaCl and at temperature ranging between 20-37 °C. The major fatty acids (>15 %) were C16 : 0 and C18 : 1 ω9c, and the mycolic acid profile included 32-36 carbon atoms. We propose that these strains represent a novel species, Corynebacterium megadyptis sp. nov. with 3BT (=DSM 111184T=NZRM 4755T) as the type strain. Phylogenomically, strains 3BT and 7BT belong to two lineages with subtle differences in MALDI-TOF spectra, chemotaxonomic profiles and phenotypic properties. The fatty acid profile of strain 3BT contains C18 : 0 as a predominant type (>15 %), which is a minor component in strain 7BT. Strain 7BT can oxidize N-acetyl-d-glucosamine, l-serine, α-hydroxy-butyric acid, l-malic acid, l-glutamic acid, bromo-succinic acid and l-lactic acid, characteristics not observed in strain 3BT. Therefore, we propose that these strains represent two subspecies, namely Corynebacterium megadyptis subsp. megadyptis subsp. nov. (type strain, 3BT=DSM 111184T=NZRM 4755T) and Corynebacterium megadyptis subsp. dunedinense subsp. nov. (type strain, 7BT=DSM 111183T=NZRM 4756T).


Asunto(s)
Ácidos Grasos , Spheniscidae , Animales , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Corynebacterium , Hibridación de Ácido Nucleico
12.
Artículo en Inglés | MEDLINE | ID: mdl-36748481

RESUMEN

A nitrogen-fixing actinobacterium strain (Cc1.17T) isolated from a root nodule of Colletia cruciata was subjected to polyphasic taxonomic studies. The strain was characterized by the presence of meso-diaminopimelic acid in its peptidoglycan, galactose, glucose, mannose, rhamnose, ribose and xylose as cell-wall sugars, phosphatidylinositol, diphosphatidylglycerol, glycophospholipids, phosphatidylglycerol, glycophospholipid and uncharacterized lipids as its polar lipids, and C16 : 0, iso-C16 : 0, C17 : 1 ω9 and C18 : 1 ω9 as major fatty acids (>10 %). Strain Cc1.17T showed 16S rRNA gene sequence similarities of 97.4-99.8 % to validly named Frankia species. Phylogenetic trees based on 16S rRNA gene and genome sequences placed strain Cc1.17T in a new lineage within the genus Frankia. Digital DNA-DNA hybridization and average nucleotide identity values between strain Cc1.17T and its closest phylogenomic neighbours were well below the thresholds recommended for prokaryotic species delineation. Therefore, strain Cc1.17T (=DSM 43829T=CECT 9313T) merits recognition as the type strain of a new species for which the name Frankia colletiae sp. nov. is proposed.


Asunto(s)
Frankia , Rubiaceae , Ácidos Grasos/química , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Rubiaceae/genética
13.
Syst Appl Microbiol ; 46(1): 126377, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36379075

RESUMEN

The status of four Frankia strains isolated from a root nodule of Alnus glutinosa was established in a polyphasic study. Taxogenomics and phenotypic features show that the isolates belong to the genus Frankia. All four strains form extensively branched substrate mycelia, multilocular sporangia, vesicles, lack aerial hyphae, but contain meso-diaminopimelic acid as the diamino acid of the peptidoglycan, galactose, glucose, mannose, ribose, xylose and traces of rhamnose as cell wall sugars, iso-C16:0 as the predominant fatty acid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol as the major polar lipids, have comparable genome sizes to other cluster 1, Alnus-infective strains with structural and accessory genes associated with nitrogen fixation. The genome sizes of the isolates range from 7.0 to 7.7 Mbp and the digital DNA G + C contents from 71.3 to 71.5 %. The four sequenced genomes are rich in biosynthetic gene clusters predicted to express for novel specialized metabolites, notably antibiotics. 16S rRNA gene and whole genome sequence analyses show that the isolates fall into two lineages that are closely related to the type strains of Frankia alni and Frankia torreyi. All of these taxa are separated by combinations of phenotypic properties and by digital DNA:DNA hybridization scores which indicate that they belong to different genomic species. Based on these results, it is proposed that isolates Agncl-4T and Agncl-10, and Agncl-8T and Agncl-18, be recognised as Frankia gtarii sp. nov. and Frankia tisai sp. nov. respectively, with isolates Agncl-4T (=DSM 107976T = CECT 9711T) and Agncl-8T (=DSM 107980T = CECT 9715T) as the respective type strains.


Asunto(s)
Alnus , Frankia , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Filogenia , Ácidos Grasos/química , Técnicas de Tipificación Bacteriana
14.
New Microbes New Infect ; 49-50: 101036, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425013

RESUMEN

Prokaryotic systematics is one of the most progressive disciplines that has embraced technological advances over the last century. The availability and affordability of new sequencing technologies and user-friendly software have revolutionised the discovery of novel prokaryotic taxa, including the identification and nomenclature of uncultivable microorganisms. These advances have enabled scientists to resolve the structure of complex heterogenous taxon and to rectify taxonomic status of misclassified strains due to errors associated with the sensitivity and/or reproducibility of phenotypic approaches. Time- and labour-intensive experimental characterisation of strains could be replaced with determining the presence or absence of genes or operons responsible for phenotypic and chemotaxonomic properties, such as the presence of mycolic acids and menaquinones. However, the quality of genomic data must be acceptable and phylogenomic threshold values for interspecies and supraspecies delineation should be carefully considered in combination of genome-based phylogeny for a reliable and robust classification. These technological developments have empowered prokaryotic systematists to reliably identify novel taxa with an understanding of community ecology and their biosynthetic and biodegradation potentials.

15.
Arch Microbiol ; 204(8): 501, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851423

RESUMEN

A genome led phylophasic study was designed to determine the taxonomic status of a strain, DSM 45956, recovered from a Saharan desert soil. A wealth of taxonomic data, including average nucleotide identity and DNA:DNA hybridization (DDH) values, showed that the isolate and the type strains of Actinopolyspora lacussalsi and Actinopolyspora righensis belong to the same species. Consequently, it is proposed that A. righensis is a heterotypic synonym of A. lacussalsi. Similarly, DDH values and associated phenotypic data show that A. lacussalsi contains two subspecies, A. lacussalsi subsp. lacussalsi and A. lacussalsi subsp. righensis which includes isolate DSM 45956.


Asunto(s)
Actinomycetales , Ácidos Grasos , Actinobacteria , Actinomycetales/genética , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Ácidos Grasos/análisis , Hibridación de Ácido Nucleico , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Arch Microbiol ; 204(8): 518, 2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871242

RESUMEN

A polyphasic study was designed to resolve the taxonomic position of isolate MGRD01-02T which was recovered from an acidic hot spring in Indonesia and assigned to the genus Actinospica. Phylogenetic analyses based on 16S rRNA gene sequences show that the isolate is most closely related to the type strains of Actinospica acidiphila (98.5%), Actinospica robiniae (97.8%) and Actinospica durhamensis (96.8%). Morphological and chemotaxonomic data underpin the assignment of the isolate to the genus Actinospica as it forms an extensively branched substrate mycelium which carries tufts of white aerial hyphae that differentiate into straight to flexuous chains of cylindrical spores with faint rugose surfaces, contains 2,6-diamino-3-hydroxydiaminopimelic acid in the peptidoglycan, mixtures of hydrogenated menaquinones with nine isoprene units, iso-C 15:O and iso-C 16:O as major fatty acids and phosphatidylethanolamine as the diagnostic phospholipid. Whole-genome sequence analyses show that the isolate, A. durhamensis CSCA 57T and Actinocrinis puniceicyclus DSM 45168T have genome sizes of 7.9, 9.6 and 6.7 Mbp, respectively. A phylogenomic tree shows that they form distinct branches in a well-supported clade, a result supported by associated phenotypic data. Average nucleotide identity and digital DNA:DNA hybridization similarities are below the recommended thresholds for assigning strains to the same species; they also indicate that isolate MGRD01-02T is most closely related to the A. durhamensis and A. robiniae strains. Corresponding amino acid identity and conserved protein data not only support these relationships but also confirm the taxonomic integrity of the genus Actinocrinis. Based on these results, it is proposed that isolate MGRD01-02T (= CCMM B1308T = ICEBB-09T = NCIMB 15218T) be classified in the genus Actinospica as Actinospica acidithermotolerans sp. nov. The draft genome of the isolate and its closest phylogenomic neighbours contain biosynthetic gene clusters with the potential to produce new natural products, notably antibiotics.


Asunto(s)
Actinobacteria , Manantiales de Aguas Termales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/química , ADN Bacteriano/genética , Ácidos Grasos/análisis , Indonesia , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Microbiología del Suelo , Vitamina K 2/química
17.
Arch Microbiol ; 204(8): 496, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35849218

RESUMEN

A novel Gram-negative, facultative anaerobic, rod-shaped, and non-motile bacterium with bio-degradation potential of polycyclic aromatic hydrocarbons (PAHs) and uranium bio-reduction, designated as RCRI7T, was isolated from Qurugöl Lake water near Tabriz city. Strain RCRI7T can grow in the absence of NaCl and tolerates up to 3% NaCl (optimum, 0-0.5%), at the temperature range of 4-45 °C (optimum, 30 °C) and a pH range of 6-9 (optimum, pH 7 ± 0.5). Results of phylogenetic analysis based on 16S rRNA gene sequence indicated that strain RCRI7T is affiliated with the genus Shewanella, most closely related to Shewanella xiamenensis S4T (99.1%) and Shewanella putrefaciens JCM 20190T (98.9%). The genomic DNA G+C content of strain RCRI7T is 41 mol%. The major fatty acids are C16:1ω9c, C18:1ω9c and iso-C17:1ω5c. The OrthoANI and ANIb values between RCRI7T and Shewanella xiamenensis S4T were 87.4% and 87.7%, and between RCRI7T and Shewanella putrefaciens JCM 20190T were 79.5% and 79.7%, respectively. Strain RCRI7T displayed dDDH values of 30.2% and 39.8% to Shewanella xiamenensis S4T and Shewanella putrefaciens JCM 20190T, respectively. The major polar lipids include phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). The respiratory quinone is Q8. Based on the polyphasic evidence presented in this paper, strain RCRI7T is considered to represent a novel species, with bioremediation potential, in the genus Shewanella, for which the name Shewanella azerbaijanica sp. nov. is proposed. The type strain is RCRI7T (= JCM 17276T) (= KCTC 62476T).


Asunto(s)
Shewanella , Cloruro de Sodio , Técnicas de Tipificación Bacteriana , Biodegradación Ambiental , ADN Bacteriano/genética , Ácidos Grasos , Fosfolípidos , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Shewanella/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-35737517

RESUMEN

A new actinobacterium strain, designated BMG 823T, was isolated from a limestone sample collected in Tunisia. Its taxonomic position was scrutinized using a polyphasic approach. Colonies of strain BMG 823T were pink orange-coloured, regular and had a moist surface. Cells are Gram-stain-positive, catalase-negative and oxidase-negative. The strain grew at pH 5.5-9, 10-40 °C and in presence of up to 4 % NaCl (w/v). Chemotaxonomically, strain BMG 823T was characterized by cell-wall type III containing meso-diaminopimelic acid as diamino acid, glucose, ribose and rhamnose as whole-cell sugars, MK-9(H4) as predominant menaquinone, and phosphatidylcholine, diphosphadidylglycerol, phosphatidethanolamine, phosphatidylcholine, phosphatidylinositol, unidentified glycolipid, unidentified aminophospholipids and unidentified glycophospholipid as major polar lipids. The fatty acid profile consisted of iso-C16 : 0 and iso-C17 : 1 ω9. Phylogenetic trees based on 16S rRNA gene and genome sequences placed strain BMG 823T within the genus Blastococcus and separated it from all type strains of validly published species. Comparison of 16S rRNA gene sequence similarity, digital DNA-DNA hybridization and average nucleotide identity indicated that strain BMG 823T was most closely related to Blastococcus litoris DSM 106127T and Blastococcus colisei BMG 822T with pairwise values well below the species differentiation thresholds. The distinct phenotypic and genotypic features of strain BMG 823T (=DSM 46838T=CECT 8881T) within the genus Blastococcus warrant its recognition as the type strain for the new species for which we propose the name Blastococcus tunisiensis sp. nov.


Asunto(s)
Actinomycetales , Carbonato de Calcio , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfatidilcolinas , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Túnez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...